Abstract

This research investigates how the design variables of ball bearing affect the bearing stiffness and the natural frequencies of a hard disk drive (HDD) spindle system at elevated temperature. It shows that any design change that increases the contact angle of ball bearing reduces the variation in the bearing stiffness and the natural frequencies at elevated temperature. This research also proposes a robust HDD spindle motor in which a wave spring maintains a constant preload minimizing the effect of temperature variation. Experimental modal testing shows that the reduction of the natural frequencies at elevated temperature is much less in the proposed HDD spindle system than in the conventional spindle system. The proposed HDD spindle motor can improve the dynamic reliability of a HDD spindle system, which contributes to the high track density of a HDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call