Abstract
Spatial distribution of rainfall and wind speed forecast errors associated with landfalling tropical cyclones (TC) occur significantly due to incorrect location forecast by numerical models. Two major areas of errors are: (i) over-estimation over the model forecast locations and (ii) underestimation over the observed locations of the TCs. A modification method is proposed for real-time improvement of rainfall and wind field forecasts and demonstrated for the typical TC AMPHAN over the Bay of Bengal in 2020. The proposed method to improve the model forecasts is a relocation method through shifting of model forecast locations of TC to the real-time official forecast locations of India Meteorological Department (IMD). The modification is applied to the forecasts obtained from the operational numerical model, the Global Forecast System (GFS) of IMD. Application of the proposed method shows considerable improvement of both the parameters over both the locations. The rainfall forecast errors due to displacement are found to have improved by 44.1%–69.8% and 72.1%–85.2% over the GFS forecast locations and over the observed locations respectively for the respective forecast lead times 48 h, 72 h, and 96 h. Similarly, the wind speed forecasts have improved by 27.6%–56.0% and 63.7%–84.6% over the GFS forecast locations and over the observed locations respectively for the respective forecast lead times 60 h, 72 h, and 84 h. The results show that the proposed technique has capacity to provide improved spatial distributions of rainfall and wind speed forecasts associated with landfalling TCs and useful guidance to operational forecasters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.