Abstract

At Institute of Nuclear and New Energy Technology (INET) the discontinuity factor corrected diffusion method with the homogenization technology was developed and applied in the control rod worth calculation of the pebble bed high temperature gas cooled reactor. But the result with the normal procedure is not accurate enough for a strong absorber. The numerical analysis shows that the strong absorber still has great influence on the flux distribution in the nearby graphite region, so that the flux distribution obtained by the normal diffusion method does not agree with the transport result. Thus, two improvements were proposed in this paper. First, instead of the neutron flux in the middle of the fine mesh, the surface flux of the absorber region was calculated through the net current in the boundary of the region; and then, while the discontinuity factor of the homogenized absorber region should be calculated, the discontinuity factor of the neighboring graphite region on the other side of the interface should also be calculated to eliminate the influence of the strong absorber. The numerical results demonstrate that, based on the improved method, the accuracy of heterogeneous transport calculation can be achieved by a diffusion calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call