Abstract

An improvement of a depth resolution and a detection efficiency in single-event three-dimensional time-of-flight (TOF) Rutherford backscattering spectrometry (RBS) is discussed on both simulation and experiment by control of secondary electron trajectories using sample bias voltage. The secondary electron, used for a start signal in single-event TOF-RBS, flies more directly to a secondary electron detector with the positive sample bias voltage of several tens of volt than that without sample bias voltage in the simulation. The simulated collection efficiency of the secondary electrons also increases with the positive sample bias voltage of several tens of volt. These simulation results indicate the possibility of a smaller depth resolution and a shorter measurement time in single-event TOF-RBS with positive sample bias voltage. The measurement time for the Pt-stripe sample using single-event three-dimensional TOF-RBS with the sample bias voltage of +100V is 65% shorter than that without sample bias voltage, resulting in a less sample damage by a probe beam. The depth resolution for the Pt stripes under the 50-nm-thick SiO2 cover-layer with the sample bias voltage of +100V is 4nm smaller than that without sample bias voltage. Positive sample bias voltage improves the depth resolution and the detection efficiency in single-event three-dimensional TOF-RBS without an influence on the beam focusing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call