Abstract

Discontinuous deformation analysis (DDA) method is a discrete element method, presenting a great advantage in modelling deformation and rigid body movements, and it is also an alternative approach for problems involving the fracturing process from continuity to discontinuity if the failure mechanism in DDA is well constituted. This paper presents a new united tensile fracture model (UTFM) for the two-dimensional DDA method to simulate the fracture behaviors of various brittle materials (e.g., rock, soil, and concrete). The new fracture model unifies four classical failure modes, including the maximum normal stress criterion, Tresca criterion, Mohr–Coulomb criterion, and the von Mises criterion, for tensile fracture. By incorporating UTFM into the original DDA frame, the improved DDA (I-DDA) can predict the crack initiation and propagation paths in Brazil disc and simulate rock fracture of various brittle materials. Numerical examples of the direct tensile test and the Brazil disc split tests are investigated to verify the accuracy and validity of the I-DDA method. The simulated results agree well with those obtained from physical tests and other numerical analyses, suggesting that the I-DDA has obvious advantage in simulating the fracture behaviors of the Brazil disc split test. Further, the I-DDA is applied to analyze the failure process of a practical earthquake-induced landslide with consideration of the tensile strength of the rock mass. The results indicate that the I-DDA is more feasible to analyze the slope failure, which can consider both the tensile and shear characteristics simultaneously compared with the original DDA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call