Abstract

Si/C composite nanofibers were prepared by electrospinning and carbonization using polyacrylonitrile as the spinning medium and carbon precursor. The effect of electrolyte additive succinic anhydride (SA) on the electrochemical performance of Si/C composite nanofiber anodes was investigated. Results show that after 50 cycles, the discharge capacity of Si/C composite nanofiber anode with the SA-added electrolyte is 34 % higher than that with additive-free electrolyte. At 150th cycle, the capacity retention of Si/C composite nanofiber anode with SA-added electrolyte is 82 % under 70 % state-of-charge. It is demonstrated that adding additive SA in the electrolyte is an effective and economic way to improve the cyclability of high-capacity Si/C composite nanofibers for next-generation high-energy lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.