Abstract
Two low water-stable nanoporous Zn-based Metal-Organic Frameworks (MOFs) with and without the NO2-functional group were synthesized by the reflux method and used to encapsulate curcumin (CCM). The characterization and application of these Zn-based MOFs (DMOF-1 and DMOF-1-NO2) have been studied by FT-IR, PXRD,1H NMR, N2 adsorption, SEM, UV-vis, and fluorescence microscopy methods. The amount of drug loading of DMOF-1 and DMOF-1-NO2 is 22.4 and 28.3 wt%, respectively. The drug loading results were also investigated by the computational simulation method. These kinds of MOFs have poor stability against water. This instability was used as a key to solving the problem of the low solubility of CCM as a model of hydrophobic cancer drug in a water-based medium. The obtained results confirmed that these poor hydrolytic MOFs could improve the solubility of CCM and enhance cytotoxicity against cancer cells (AGS) in comparison with free CCM. These results can prepare a new opportunity to increase the anticancer activity of hydrophobic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.