Abstract

Controlling the heat transport profile is important for high performance in magnetically confined fusion plasmas. In this study, improved electron heat transport was achieved in neutral beam injection plasmas by applying high-intensity gas puffing (HIGP) on a stellarator/heliotron device called Heliotron J. Compared with conventional gas puffing (GP) fueling discharge, a higher and more peaked electron temperature profile was obtained, and the core ion temperature was slightly higher but similarly shaped. Using similar parameters, the electron density profile for HIGP remained similar and differed from the hollow density profile observed in electron cyclotron heating-eIBT plasma. Transport analysis using the FIT3D and TR-snap codes showed a clear reduction in the effective electron heat transport coefficient in the plasma core region. However, more detailed experiments are required to understand the mechanisms underlying this improvement fully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call