Abstract

In this paper, convective heat transfer of Fe3O4–carbon nanotubes (CNTs) hybrid nanofluid was studied in a horizontal small circular tube under influence of annular magnets. The pipe has an inner diameter of 3 mm and a length of 1.2 m. Heat transfer characteristics of the Fe3O4–water nanofluid were examined for many parameters, such as nanoparticle volume fraction in the range of 0.4–1.2% and Reynolds number in the range of 476–996. In order to increase the thermal conductivity of the Fe3O4–water nanofluid, carbon nanotubes with 0.12–0.48% volume fraction were added into the nanofluid. It was observed that for the Fe3O4–CNTs–water nanofluid with 1.44% volume fraction and under a magnetic field, the maximal local Nusselt number at the Reynolds number 996 increased by 61.54% compared with without a magnetic field. Results also show that compared with the deionized water, the maximal enhancements of the average Nusselt number are 67.9 and 20.89% for the Fe3O4–CNTs–water nanofluid with and without magnetic field, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.