Abstract

A constant temperature anemometer (CTA) is a useful instrument for measuring the velocity fluctuations in turbulent flow. However, in our calibration test, the actual frequency response of a typical CTA was no more than 5 kHz under normal laboratory conditions: for example, the diameter of the hot wire is 5 μm and the free stream velocity is 20 m/s. Therefore, in some cases, a typical CTA is not enough to measure accurately turbulent velocity fluctuations for fine scale structures. In this paper, we present a rearranged CTA circuit to obtain a faster frequency response so that in turn fine-scale structures can be more accurately investigated. A typical CTA circuit consists of a Wheatstone bridge and a feed back circuit. To improve the frequency response, the ratio of the electrical resistance of the Wheatstone bridge is set to 1 and two operational amplifiers with a gain-band width product of 100 MHz and a slew rate of 20 V/μs are used in the feedback circuit. An experiment to estimate the frequency response of the rearranged CTA circuit is performed with a free stream velocity of 20 m/s and using hot wires of diameter 5 μm and 3 μm. Experimental results show that the roll-off frequency of the rearranged CTA circuit is improved from 5 kHz to 20 kHz for the 5 μm hot wire and from 6 kHz to 40 kHz for the 3 μm hot wire. Velocity measurements are made using the rearranged CTA circuit in a plane turbulent jet where the value of the Taylor microscale λ is 3.2 mm and the Taylor-scale Reynolds number Reλ is 440. Measurements shows that the power spectrum obeys the reliable numerical profile derived by a LDIA (Lagrangian Direct-Interaction Approximation) theory until more than 0.20 of the non-dimensional wave number κ1η, which is a wider range in comparison with the results obtained when using a typical CTA circuit. Here, κ1 is the axial wave number and η is the Kolmogorov microscale. Further, velocity measurements are performed taken using the rearranged CTA circuit with a square jet where the value of λ is 6.3 mm and Reλ is 1,720. Measurements shows that the power spectrum obeys the numerical profile by the LDIA theory in the range 0.04 < κ1η < 0.20, which is a much wider range than the results obtained when using a typical CTA circuit (0.04 < κ1η < 0.08). These results indicate that the rearranged CTA circuit can be used to investigate fine-scale structures in turbulent flows more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call