Abstract

This paper reports on the effect of fluorine incorporation on gate-oxide reliability, especially the spatial distribution of charge-to-breakdown (Q/sub BD/). Fluorine atoms were implanted into gate electrodes and introduced into gate-oxide films by annealing. Excess fluorine incorporation increased the oxide thickness and degraded not only the reliability of Si/SiO/sub 2/ interfaces but also dielectric-breakdown immunity. However, it was found, for the first time, that appropriate fluorine incorporation into gate-oxide films could dramatically improve Q/sub BD/-distribution tails in Weibull plots, while maintaining both Si/SiO/sub 2/ interface characteristics and average Q/sub BD/ values. The experimental result for a depth profile of fluorine atoms indicated that fluorine atoms are located dominantly at the two interfaces of the gate-oxide film. In addition, the results of infrared (IR) absorption analysis indicated that the strain of SiO/sub 2/ structures is reduced with increasing fluorine doses. We proposed that both strain release and restructuring of the SiO/sub 2/ network by fluorine incorporation are responsible for improving the Q/sub BD/ of weaker oxide films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call