Abstract

Copper-promoted nickel-based metal nanoparticles (NPs) with high dispersion and good thermal stability were derived from layered-double hydroxides (LDHs) precursors that were facilely developed by a co-precipitation strategy. The copper-promoted Ni-based metal NPs catalysts were investigated for methane reforming with carbon dioxide to hydrogen and syngas. A series of characterization techniques including XRD, N2 adsorption and desorption, H2-TPR, XPS, CO2-TPD, TEM, TGA and in situ CH4-TPSR were utilized to determine the structure-function relationship for the obtained catalysts. The copper addition accelerated the catalyst reducibility as well as the methane activation, and made the Ni species form smaller NPs during both preparation and reaction by restricting the aggregation. However, with higher copper loading, the derived catalysts were less active during methane reforming with CO2 to syngas. It was confirmed that the catalyst with 1wt% Cu additive gave the higher catalytic activity and remained stable during long time reaction with excellent resistance to coking and to sintering. Furthermore, the mean size of metal NPs changed minimally from 6.6 to 7.9nm even after 80h of time on stream at temperature as high as 700°C for this optimized catalyst. Therefore, this high dispersed anti-coking copper-promoted nickel catalyst derived from LDHs precursor could be prospective catalyst candidate for the efficient heterogeneous catalysis of sustainable CO2 conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.