Abstract

BackgroundIn serious consideration of the worldwide environmental issues associated with the extensive use of the textile dyes and effluents generated thereof, the scientists across the world are in search for potential treatment technologies for their treatment. In such scenario the ligninolytic enzymes provide a potential alternative because they are cost effective, eco-friendly and can be applied to wide range of dye containing industrial effluents.ResultsLaccase produced from Pleurotus ostreatus IBL-02 during decolorization of the reactive textile dye Drimarene brilliant red K-4BL (DBR K-4BL) was purified and immobilized by hydrophobic gel entrapment. The crude laccase was 4.2-fold purified with specific activity of 573.52 U/mg after passing through the DEAE-Sepharose ion exchange and Sephadex-G-100 chromatography columns. P. ostreatus IBL-02 laccase was found to be a homogenous monomeric protein as evident by single band corresponding to 67 kDa on native and sodium dodesylsulfate polyacrylamide gel electrophoresis (PAGE). The laccase was immobilized by entrapment in Sol–gel matrix of trimethoxysilane (T) and proplytetramethoxysilane (P) prepared using different T:P molar ratios. The free and immobilized laccases were compared to investigate the effect of immobilization on catalytic efficiency and thermo-stability features. Laccase immobilized in the Sol–gel of 1:5 T:P ratio was optimally active and thermo-stable fraction at pH 5, 60°C with half-life of 3 h and 50 min. Laccases immobilized in 1:2 and 1:5 T:P ratio gels had significantly higher Km (83 and100mM) and Vmax (1000 and 1111 mM/mg) values as compared to free laccase. After 5 h reaction time varying decolorization percentages with a maximum of 100% were achieved for different dyes and effluents.ConclusionsIn summary, P. ostreatus IBL-02 laccase was immobilized by entrapping in a Sol–gel matrix with an objective to enhance its catalytic and stability properties. Sol–gel entrapped laccase presented potential efficiency as a biocatalyst when applied for decolorization of different dyes and effluents. The main benefits of the Sol–gel matrix immobilization processes are the eco-friendly approach, chemical free and energy saving reaction conditions.

Highlights

  • In serious consideration of the worldwide environmental issues associated with the extensive use of the textile dyes and effluents generated thereof, the scientists across the world are in search for potential treatment technologies for their treatment

  • Source of laccase The laccase produced by P. ostreatus IBL-02 during decolorization of Drimarene brilliant red K-4BL under optimum conditions [17] was used for purification, immobilization and characterization studies

  • P. ostreatus IBL-02 produced 321 U/mL of laccase during complete decolorization (100%) of Drimarene Brilliant Red K- 4BL in 24 h

Read more

Summary

Results

Laccase produced from Pleurotus ostreatus IBL-02 during decolorization of the reactive textile dye Drimarene brilliant red K-4BL (DBR K-4BL) was purified and immobilized by hydrophobic gel entrapment. P. ostreatus IBL-02 laccase was found to be a homogenous monomeric protein as evident by single band corresponding to 67 kDa on native and sodium dodesylsulfate polyacrylamide gel electrophoresis (PAGE). The laccase was immobilized by entrapment in Sol–gel matrix of trimethoxysilane (T) and proplytetramethoxysilane (P) prepared using different T:P molar ratios. The free and immobilized laccases were compared to investigate the effect of immobilization on catalytic efficiency and thermo-stability features. Laccase immobilized in the Sol–gel of 1:5 T:P ratio was optimally active and thermo-stable fraction at pH 5, 60°C with half-life of 3 h and 50 min. After 5 h reaction time varying decolorization percentages with a maximum of 100% were achieved for different dyes and effluents

Conclusions
Background
Results and discussion
36. Laemmli UK
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call