Abstract

In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol–gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E=350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix–P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6–11% of the enzyme’s activity after five batches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.