Abstract

tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is a key chiral intermediate for the side chain synthesis of rosuvastatin. In this study, random mutagenesis, site-saturation mutagenesis and combinatorial mutagenesis methods were applied to improve the activity of a synthesized stereoselective short chain carbonyl reductase (SCR) to prepare (3R,5S)-CDHH. After screened by high-throughput screening method and high-performance liquid chromatography, mut-Phe145Met/Thr152Ser and mut-Phe145Tyr/Thr152Ser, were obtained, and the enzyme activities of mutants were improved by 1.60- and 1.91-fold compared with parent enzyme, respectively. The catalytically efficiencies (kcat/Km) of mut-Phe145Met/Thr152Ser and mut-Phe145Tyr/Thr152Ser exhibited 5.11- and 8.07-fold improvements in initial activity toward (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH), respectively. In the asymmetric reduction, mut-Phe145Tyr/Thr152Ser catalyzed 500 g L−1 of (S)-CHOH to produce (3R,5S)-CDHH with >99% yield and >99% e.e., and the highest space-time yield achieved at 752.76 mmol L−1 h−1 g−1 wet cell weight within 8 h bioconversion. This study provides a foundation for the preparation of (3R,5S)-CDHH by carbonyl reductase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call