Abstract

N-doped activated carbon fibers have been synthesized by using chemically polymerized aniline as source of nitrogen. Commercial activated carbon fibers (A20) were chemically modified with a thin film of polyaniline (PANI) inside the microporosity of the carbon fibers. The modified activated carbon fibers were carbonized at 600 and 800°C, respectively. In this way, activated carbon fibers modified with surface nitrogen species were prepared in order to analyze their influence in the performance of electrochemical capacitors in organic electrolyte. Symmetric capacitors were made of activated carbon fibers and N-doped activated carbon fibers and tested in a two-electrode cell configuration, using triethylmethylammonium tetrafluoroborate/propylene carbonate (TEMA-BF4/PC) as electrolyte. The effect of nitrogen species in the degradation or stabilization of the capacitor has been analyzed through floating durability tests using a high voltage charging (3.2V). The results show higher stabilizing effect in carbonized samples (N-ACF) than in non-carbonized samples and pristine activated carbon fibers, which is attributed to the presence of aromatic nitrogen group, especially positively charged N-functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call