Abstract

Butanol fermentation comprises two successive and distinct stages, namely acidogenesis and solventogenesis. The current lack of clarity regarding the underlying metabolic regulation of fermentation impedes improvements in biobutanol production. Here, a proteomics study was performed in the acidogenesis phase, the lowest pH point (transition point), and the solventogenesis phase in the butanol-producing symbiotic system TSH06. Forty-two Clostridium acetobutylicum proteins demonstrated differential expression levels at different stages. The protein level of butanol dehydrogenase increased in the solventogenesis phase, which was in accordance with the trend of butanol concentration. Stress proteins were upregulated either at the transition point or in the solventogenesis phase. The cell division-related protein Maf was upregulated at the transition point. We disrupted the maf gene in C. acetobutylicum TSH1, and Bacillus cereus TSH2 was added to form a new symbiotic system. TSH06△maf produced 13.9 ± 1.0g/L butanol, which was higher than that of TSH06 (12.3 ± 0.9g/L). Butanol was furtherly improved in fermentation at variable temperature with neutral red addition for both TSH06 and TSH06△maf. The butanol titer of the maf deletion strain was higher than that of the wild type, although the exact mechanism remains to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.