Abstract

This paper proposes a new procedure in order to improve the performance of block matching and 3-D filtering (BM3D) image denoising algorithm. It is demonstrated that it is possible to achieve a better performance than that of BM3D algorithm in a variety of noise levels. This method changes BM3D algorithm parameter values according to noise level, removes prefiltering, which is used in high noise level; therefore Peak Signal-to-Noise Ratio (PSNR) and visual quality get improved, and BM3D complexities and processing time are reduced. This improved BM3D algorithm is extended and used to denoise satellite and color filter array (CFA) images. Output results show that the performance has upgraded in comparison with current methods of denoising satellite and CFA images. In this regard this algorithm is compared with Adaptive PCA algorithm, that has led to superior performance for denoising CFA images, on the subject of PSNR and visual quality. Also the processing time has decreased significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.