Abstract

BackgroundThe production of secondary metabolites with antibiotic properties is a common characteristic to entomopathogenic bacteria Xenorhabdus spp. These metabolites not only have diverse chemical structures but also have a wide range of bioactivities with medicinal and agricultural interests such as antibiotic, antimycotic and insecticidal, nematicidal and antiulcer, antineoplastic and antiviral. It has been known that cultivation parameters are critical to the secondary metabolites produced by microorganisms. Even small changes in the culture medium may not only impact the quantity of certain compounds but also the general metabolic profile of microorganisms. Manipulating nutritional or environmental factors can promote the biosynthesis of secondary metabolites and thus facilitate the discovery of new natural products. This work was conducted to evaluate the influence of nutrition on the antibiotic production of X. bovienii YL002 and to optimize the medium to maximize its antibiotic production.ResultsNutrition has high influence on the antibiotic production of X. bovienii YL002. Glycerol and soytone were identified as the best carbon and nitrogen sources that significantly affected the antibiotic production using one-factor-at-a-time approach. Response surface methodology (RSM) was applied to optimize the medium constituents (glycerol, soytone and minerals) for the antibiotic production of X. bovienii YL002. Higher antibiotic activity (337.5 U/mL) was obtained after optimization. The optimal levels of medium components were (g/L): glycerol 6.90, soytone 25.17, MgSO4·7H2O 1.57, (NH4)2SO4 2.55, KH2PO4 0.87, K2HPO4 1.11 and Na2SO4 1.81. An overall of 37.8% increase in the antibiotic activity of X. bovienii YL002 was obtained compared with that of the original medium.ConclusionsTo the best of our knowledge, there are no reports on antibiotic production of X. boviebii by medium optimization using RSM. The results strongly support the use of RSM for medium optimization. The optimized medium not only resulted in a 37.8% increase of antibiotic activity, but also reduced the numbers of experiments. The chosen method of medium optimization was efficient, simple and less time consuming. This work will be useful for the development of X. bovienii cultivation process for efficient antibiotic production on a large scale, and for the development of more advanced control strategies on plant diseases.

Highlights

  • The production of secondary metabolites with antibiotic properties is a common characteristic to entomopathogenic bacteria Xenorhabdus spp

  • These compounds showed strong activity against Gram-positive bacteria, yeast and many fungal species. It was concluded on the basis of in vitro tests that the antibiotics from X. bovienii may offer a good opportunity for the control of diseases caused by some species of plant pathogenic fungi

  • The main aim of this work was to optimize the medium to maximize antibiotic production by X. bovienii YL002, a strain isolated from its nematode symbiont Steinernema sp YL002, which was obtained from the soil of Yangling, China

Read more

Summary

Introduction

The production of secondary metabolites with antibiotic properties is a common characteristic to entomopathogenic bacteria Xenorhabdus spp. The IJ penetrates an insect host and releases the bacteria into the hemocoel [9], benzylineacetone [10], xenortides and xenematide [11], and cyclolipopeptide [12] These metabolites have diverse chemical structures, and have a wide range of bioactivities with medicinal and agricultural interests, such as antibiotic, antimycotic, insecticidal, nematicidal, antiulcer, antineoplastic and antiviral. X. bovienii strain A2 appears to be unique in the diversity of small-molecule antimicrobial compounds since four indoles, several xenorhabdins, xenomins and xenorxides have been isolated from this strain alone [14] These compounds showed strong activity against Gram-positive bacteria, yeast and many fungal species. We found that the methanol extracted bioactive compounds from X. bovienii YL002 showed potent therapeutic and protective effects against B. cinerea on tomato plants and P. capsici on pepper plants [17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call