Abstract
Our study investigates the influence of several doses of gamma rays on the antibacterial behavior of nanocomposite of silver nanoparticles (AgNPs) doped in a blend of poly (vinyl alcohol) (PVA)-Polyvinyl Pyrrolidone (PVP). AgNPs@PVA-PVP nanocomposite films were fabricated via laser ablation route, and then the synthesized films were subjected to various gamma ray's doses. X-ray diffraction (XRD) data shows a diffraction peak at 2θ = 38° assigned to the existence of AgNPs. Ultraviolet–visible (UV–Vis) results confirm the characteristic peak of silver nanoparticles at 425 nm. The cell viability and antibacterial behavior results confirmed the enhancement in the performance of AgNPs@PVA-PVP composite after irradiated to gamma rays. These values of cell viability have been raised by increasing the dose of gamma rays to 94.5 ± 6.5 % for dose at 70 kGy gamma rays. The values of the inhibition zone of microorganisms were enhanced by raising the doses of gamma rays to 19.5 ± 0.5 and 21.3 ± 0.6 against E. coli and S. aureus respectively specifically for nanocomposite with gamma dose 70 kGy. Thus, the improved antibacterial activity of AgNPs@PVA-PVP nanocomposite could be used in biomedical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.