Abstract

In order to reduce the complexity of splicing the mirrors of an infrared (IR)/millimeter wave (MMW) beam combiner into a plane, the wavefront division imaging technique (WDIT) was proposed. However, WDIT would lead to the difference of air gap thicknesses among different mirrors, which will further cause the nonuniformity of the MMW field. Simultaneously, there were slots between every two mirrors after the mirror array was spliced and adjusted, which would also affect MMW and IR diffraction. Thus, the aperture field integration method (AFIM) was proposed to compute the MMW near field distribution and the IR far field distribution. The method was validated by comparing the results obtained from the multilevel fast multipole method and experiment. The experimental results showed that the diffraction phenomenon caused by a tilt slot or a hole can approximate that caused by a slot with the width or a hole with the edge diameter along the tilt direction multiplied by cosine of the tilt angle. The variations of both MMW and IR field distributions were caused by three factors: different tilt angles, air gap thicknesses, and slot widths were analyzed by using AFIM in the spatial domain and the time domain. The simulation results showed that the three factors will affect the uniformity of the MMW field. And the uniformity introduced by the air gap thicknesses was the worst. However, the uniformity still satisfied the requirement for phase error when the variation of the air gap thicknesses was less than 1 mm. Although the three factors would cause the loss of energy and an enhancement in the background noise received by an IR focal plane array, the resolution of the IR system would not be affected. Thus, the WDIT was validated through the above analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.