Abstract

We develop a double-layer p-type hydrogenated nanocrystalline silicon (p-nc-Si:H) structure consisting of a low hydrogen diluted i/p buffer layer and a high hydrogen diluted p-layer to improve the hydrogenated amorphous silicon (a-Si:H) n-i-p solar cells. The electrical, optical and structural properties of p-nc-Si:H films with different hydrogen dilution ratio ( R H) are investigated. High conductivity, low activation energy and wide band gap are achieved for the thin films. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses indicate that the thin films contain nanocrystallites with grain size around 3–5 nm embedded in the amorphous silicon matrix. By inserting a p-nc-Si:H buffer layer at the i/p interface, the overall performance of the solar cell is improved significantly compared to the bufferless cell. The improvement is correlated with the reduction of the density of defect states at the i/p interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.