Abstract

The use of orthogonal components (OC) underlies the construction of measuring elements of modern protection and automation devices. In most microprocessor-based protections, the orthogonal component of the input signal is extracted using a discrete Fourier transform (DFT). The DFT disadvantages are its low speed, which is more than one period of the fundamental frequency, as well as the sensitivity to the free aperiodic component, which creates significant conversion errors depending on the time constant of its decay. Such a settling time of the true output signal is often unacceptable for the design of high-speed measuring devices. The paper proposes to form the OC of the equivalent signal according to the values of the cosine and sine OC of the fundamental harmonic, formed using the DFT by multiplying them by the resulting correction factor. The developed algorithm for the formation of orthogonal components of input signals in microprocessor protections is characterized by high speed in transient modes and it has wide functionality. So, the proposed digital device for forming the orthogonal components of an equivalent signal, in comparison with digital filter based on the DFT, has an increased operating speed both in the mode of occurrence of a short circuit and during the decay of the monitored signal, while maintaining the same characteristics as in the DFT in other modes. A block diagram of the proposed digital device for forming the OC of an equivalent signal has been developed, all blocks of which can be implemented on a microelectronic and microprocessor element base. A digital model of the specified device has been developed in the dynamic modeling system MatLab-Simulink in accordance with the structural diagram. As a result of the calculations, a significant (up to two times) increase in the performance of the proposed digital device for forming the OC in transient modes has been established in comparison with the shapers based on the DFT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call