Abstract

We present a discrete velocity scheme which solves the Boltzmann equation and show numerical results for homogeneous relaxation problems. Although direct simulation of the Boltzmann equation can be efficient for transient problems, computational costs have restricted its use. A velocity interpolation algorithm enables us to select post‐collision velocity pairs not restricted to those that lie precisely on the grid. This allows efficient evaluation of the replenishing part of the collision integral with reasonable accuracy. In previous work [1] the scheme was demonstrated with the depleting terms evaluated exactly, which made the method of O(N2) where N is the number of grid points in the velocity space. In order to reduce the computational cost, we have developed an acceptance‐rejection scheme to enable more efficient evaluation of the depleting term. We show that the total collision integral can be evaluated accurately in combination with the mapping scheme for the replenishing term. To improve our schem...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.