Abstract
The purpose of this study was to improve the 3D printing accuracy of pineapple gel and its subsequent microwave freeze drying (MFD) solidification precision based on infill percentage control (30%, 50%, 70%, and 90%) and internal models design (Hilbert curve, honeycomb, and rectilinear). Through comparing the designed models with the physical dimensions of the printed and dehydrated products, the optimal regulation strategy was obtained. Results showed that the printing deviation of samples decreased initially and then increased with higher infill percentages, with the 70% infill percentage having the lowest deviation. Among all internal models, the rectilinear infill pattern showed the best printing accuracy. Porosity and the shape deformation rate of MFD solidification products initially decreased and then increased with higher infill percentages. The 70% infill percentage products had the lowest shape deformation rate. The honeycomb infill pattern performed best in reducing solidification sample shrinkage and deformation. Additionally, micro-CT scans revealed that the honeycomb infill pattern helped maintain the integrity of each layer's lines of MFD solidification products, closely matching the model's line distribution. In the 50% and 70% infill percentage, honeycomb and rectilinear samples exhibited better crispness. A 70% honeycomb infill pattern was recommended for optimal printing and post-solidification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.