Abstract

Three-dimensional (3D) mapping of power lines is very important for power line inspection. Many remotely-sensed data products like light detection and ranging (LiDAR) have been already studied for power line surveys. More and more data are being obtained via photogrammetric measurements. This increases the need for the implementation of advanced processing techniques. In recent years, there have been several developments in visualisation techniques using UAV (unmanned aerial vehicle) platform photography. The most modern of such imaging systems have the ability to generate dense point clouds. However, image-based point cloud accuracy is very often various (unstable) and dependent on the radiometric quality of images and the efficiency of image processing algorithms. The main factor influencing the point cloud quality is noise. Such problems usually arise with data obtained via low-cost UAV platforms. Therefore, generated point clouds representing power lines are usually incomplete and noisy. To obtain a complete and accurate 3D model of power lines and towers, it is necessary to develop improved data processing algorithms. The experiment tested the algorithms on power lines with different voltages. This paper presents the wavelet-based method of processing data acquired with a low-cost UAV camera. The proposed, original method involves the application of algorithms for coarse filtration and precise filtering. In addition, a new way of calculating the recommended flight height was proposed. At the end, the accuracy assessment of this two-stage filtration process was examined. For this, point quality indices were proposed. The experimental results show that the proposed algorithm improves the quality of low-cost point clouds. The proposed methods improve the accuracy of determining the parameters of the lines by more than twice. About 10% of noise is reduced by using the wavelet-based approach.

Highlights

  • Photogrammetric mapping of power lines with the use of photogrammetry is currently a topic of great interest to engineering researchers

  • This paper has presented an analysis of data obtained with both a professional and a low-cost unmanned platform

  • The aim of the study was to analyse the point clouds generated from unmanned aerial vehicle (UAV)

Read more

Summary

Introduction

Photogrammetric mapping of power lines with the use of photogrammetry is currently a topic of great interest to engineering researchers. It might prove difficult to render the 3D reconstruction of power lines unless appropriate conditions for data acquisition are maintained. Many remotely-sensed data products, such as synthetic aperture radar (SAR), thermal sensor, light detection and ranging (LiDAR), land-based mobile mapping data, and unmanned aerial vehicle (UAV), have been studied for power line surveys [1] and other geosurvey applications [2,3]. Most research papers have focused on the extraction of power lines from aerial laser scanning (ALS) data. Proposed the use of Automated Power Line Extraction from ALS in forest areas, while Wang et al. In [6] used random forest and neural network algorithms for power line classification in suburban. Other elements of energy networks (e.g., pylons) were modelled from

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call