Abstract
Apparent resistivity data from the Offset-Wenner array (Zemun, Serbia), the square array (Bogatić and Golubac, Serbia) and the Wenner tri-potential technique (Vrdnik, Serbia), were used to detect, measure, and reduce lateral effects in 1D inversion. Forward and inverse modelling with the Wenner α, β and γ arrays determined that the Wenner β array provided the most accurate estimate of the first-and second-layer resistivity, while the Wenner γ array provided the most accurate estimate of the high resistivity substratum. The survey on the Zemun loess plateau revealed that if the lateral index of inhomogeneity (LII) is low, the 1D interpretation of both Wenner arrays is justifiable. In addition, the averaging of resistances will result in an apparent resistivity curve that is devoid of lateral effects resulting from near-surface inhomogeneities. As demonstrated by the Vrdnik example, 1D inversion is inadequate when the values of LII and processing covariance (PC) are high. The survey in Golubac was conducted using the square array, which produced lower PC values than collinear arrays. Therefore, the quality of the averaged sounding curve was higher. Also, the interpolated values of the Offset Wenner array displayed reasonable accuracy, while the extrapolated values were inadequate when a low resistivity substratum was present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.