Abstract

Photocatalytic coating has been widely studied as a promising material to remove air pollutants. However, the effectiveness and long-term effect of photocatalysis in high relative humidity environment is still the main challenge in this field. In this study, a fluorinated WO3-TiO2 nanorods/SiO2 epoxy photocatalytic superamphiphobic coating (FTSE coating) was prepared using a simple spraying method. The micromorphology and chemical composition of FTSE coating was characterized by SEM, EDS, FT-IR, XPS and TGA techniques. The advanced contact angle and hysteresis angle test show that the FTSE coating had excellent superamphiphobicity. The mechanical abrasions, corrosion resistance and UV aging tests show that the FTSE coating exhibited reasonable durability. Besides, the NO degradation efficiency of hydrophilic and superamphiphobic coatings with contact angles of 20.19°, 87.74°, 162.93° and 164.47° was tested in different humidity environment. The results showed that the superamphiphobic coating exhibited more superior photocatalytic degradation efficiency (84.02%) than the hydrophilic coating (51.38%) at a high relative humidity (RH=98%). Finally, FTSE coating exhibited prominent photocatalytic stability and the synergistic effect of photocatalysis and self-cleaning. After 30 d outdoor weathering test, the NO degradation efficiency decreased by 13.07% and recovered to the original level after flushing. The improvement mechanism of NO degradation performance was proposed based on the characteristics of superamphiphobic surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.