Abstract

The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in Trichoderma orientalis EU7-22. The binary vector pUR5750G/bxl::hph was constructed to knock out the β-xyl1 gene (encoding β-xylosidases) in T. orientalis EU7-22 by homologous integration, producing the mutant strain T. orientalis Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42IU/mL, which increased by only 0.07% compared to that of parental strain EU7-22, whereas β-xylosidase activity was 0.06IU/mL, representing a 91.89% decrease. When xylanase (200IU/g xylan), produced by T. orientalis EU7-22 and T. orientalis Bxyl-1, was used to hydrolyze beechwood xylan, in contrast to the parental strain, the XOs were enhanced by 83.27%, whereas xylose decreased by 45.80% after 36h in T. orientalis Bxyl-1. Based on these results, T. orientalis Bxyl-1 has great potential for application in the production of XOs from lignocellulosic biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.