Abstract

The phase of the amplitude-modulated radiation reflected by a Lambertian target immersed in water was measured by using a linearly and circularly polarized sounding laser beam. Different values of the water extinction coefficient in the range of 0.06 - 2 m(-1) were realized by adding skim milk as a scattering element. It is shown that very efficient rejection of optical noise, resulting in reliable phase measurements, is accomplished with a cross-polarized and copolarized detection scheme for linear and circular polarization, respectively. The experiment demonstrates that phase measurements are very sensitive to optical noise suppression and that, as far as single scattering is the main involved mechanism, significant improvements can be achieved by adopting a polarization control on both the transmitter and the receiver stages of the apparatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call