Abstract
Hydrogen gas sensing response of RF sputtered nano-crystalline ZnO thin film is improved by ~34.73% using swift heavy ion irradiation technique. X-ray diffraction reveals single crystalline wurtzite structure of ZnO thin films. Full width half maximum (FWHM) of (0002) diffraction peak is decreased with increase in ion fluences. However, at very high fluence 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> ions/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , crystallinity is degraded while FWHM of diffraction peak increases. The ZnO films were grown under highly compressive stress, which was relaxed with incremental ion fluences up to 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> ions/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . Cathodoluminescence spectroscopy shows intense predominant peak around ~3.23 eV, which indicates good optical quality of the films. As ion fluence increases, a blue shift appears in near band emission peak from 3.23 to 3.33 eV, which indicates that in-plane stress is decreased. Surface morphology shows generation of self-affine nanostructure and grain fragments as ion fluences were increased. Grain fragmentations had enhanced the surface reaction, and as a result, gas sensor's relative response has improved. It was observed that the gas sensor's sensitivity is strongly dependent on ion fluences and operating temperature. The sensitivity was enhanced from 66.68% to 89.84% with fluence variations from pristine to 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> ions/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 175 °C operating temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.