Abstract

In the present paper, the process parameters of revolving tip-based machining were optimized for the fabrication of microchannel structures. It was found that in comparison with the micromilling process, the main factor affecting the surface quality of revolving tip-based machining originated from residual materials produced in each revolution. Three process parameters, including cutting depth, feeding rate, and tool path strategy, were studied experimentally to optimize the surface quality of the machined aluminum alloy and polymethylmethacrylate (PMMA). It was noticed that at smaller cutting depths (< 3 µm) and feeding rates (< 20 µm/s) with fixed revolving parameters (50 Hz frequency and 6 µm radius), microchannels with better bottom surfaces were formed. Two different types of tool path strategies were designed and compared to obtain the best surface quality (Sa) of aluminum alloy (21 nm) and PMMA (19 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call