Abstract

In this work, thermomechanical treatment (single-pass rolling at 800 °C and solution treatment) was applied to nuclear-grade hot-rolled austenitic stainless steel to eliminate the mixed grain induced by the uneven hot-rolled microstructure. By employing high-temperature laser scanning confocal microscopy, microstructure evolution during solution treatment was observed in situ, and the effect of single-pass rolling reduction on it was investigated. In uneven hot-rolled microstructure, the millimeter-grade elongated grains (MEGs) possessed an extremely large size and a high Schmid factor for slip compared to the fine grains, which led to greater plastic deformation and increased dislocation density and deformation energy storage during single-pass rolling. During subsequent solution treatment, there were fewer nucleation sites for the new grain, and the grain boundary (GB) was the main nucleation site in MEGs at a lower rolling reduction. In contrast, at a higher reduction, increased uniformly distributed rolling deformation and more nucleation sites were developed in MEGs. As the reduction increased, the number of in-grain nucleation sites gradually exceeded that of GB nucleation sites, and in-grain nucleation preferentially occurred. This was beneficial for promoting the refinement of new recrystallized grains and a reduction in the size difference of new grains during recrystallization. The single-pass rolling reduction of 15-20% can effectively increase the nucleation sites and improve the uniformity of rolling deformation distribution in the MEGs, promote in-grain nucleation, and finally refine the abnormally coarse elongated grain, and eliminate the mixed-grain structure after solution treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.