Abstract
AbstractThe effects of a seeding layer, which was deposited on Pt/TiO2/SiO2/Si substrates using magnetron sputtering, on the characteristics of sol-gel-deposited strontium-bismuth-tantalate (SBT) thin films are investigated. The seeding layer serves as nucleation sites so homogeneous crystalline SBT films of bismuth-layered structure (BLS) with fine grains are successfully obtained by 750°C rapid thermal annealing in O2 ambient. The remanent polarization (2Pr) improves from 12.1 to 18.8 μC/cm2 with the addition of the seeding layer. In addition, the seeding layer also results in a lower nucleation temperature, allowing the use of 700°C annealing for 10 min to grow SBT films that are fully crystallized with BLS phase and shows good ferroelectric properties. Finally, crystallinity and microstructures of SBT films are found to be strongly dependent on the thickness of the seeding layer. Optimum Ta-seeded SBT thin film crystallized at 700°C for 10min depicts a higher 2Pr value (12.9 μC/cm2 (@5V) than that of the un-seeded films crystallized at 750°C for 1min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.