Abstract

The properties of CaCu3.1Ti4O12.1 [CC3.1TO] ceramics with the addition of Al2O3 nanoparticles, prepared via a solid-state reaction technique, were investigated. The nanoparticle additive was found to inhibit grain growth with the average grain size decreasing from approximately 7.5 μm for CC3.1TO to approximately 2.0 μm for the unmodified samples, while the Knoop hardness value was found to improve with a maximum value of 9.8 GPa for the 1 vol.% Al2O3 sample. A very high dielectric constant > 60,000 with a low loss tangent (approximately 0.09) was observed for the 0.5 vol.% Al2O3 sample at 1 kHz and at room temperature. These data suggest that nanocomposites have a great potential for dielectric applications.

Highlights

  • CaCu3Ti4O12 [CCTO] is an interesting dielectric material which exhibits a high dielectric constant over 10,000 at room temperature and shows temperature independence over the temperature range from approximately 100 to 400 K [1,2,3]

  • Internal interfaces in the polycrystalline CCTO give rise to the polarization in the insulating grain boundary and at the semiconducting grains which is well explained by the internal barrier layer capacitor [IBLC] model [6,7]

  • To improve the dielectric properties further, many cations have been introduced into CCTO, including Co, Zr, Fe, Sc, and Nb on the B site and substitution

Read more

Summary

Introduction

CaCu3Ti4O12 [CCTO] is an interesting dielectric material which exhibits a high dielectric constant over 10,000 at room temperature and shows temperature independence over the temperature range from approximately 100 to 400 K [1,2,3]. Since the discovery of this material by Subramanian et al [1], CCTO has been widely studied to further understand and improve its properties. In the CCTO lattice, the TiO6 octahedra are tilted which results in a doubling of the perovskite-like structure, involved in the planar square arrangement of the oxygen around the copper ions [4]. The CCTO ceramics exhibit an electrically heterogeneous structure involving mobile-charged species in terms of the Maxwell-Wagner relaxation [5]. To improve the dielectric properties further, many cations have been introduced into CCTO, including Co, Zr, Fe, Sc, and Nb on the B site and substitution

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.