Abstract

In this study, γ-dicalcium silicate (γ-C2S) was incorporated into ordinary Portland cement (OPC) to sequester CO2 to enhance the carbonation resistance of cement-based composite materials. γ-C2S can react with CO2 rapidly to form vaterite and high dense SiO2 gel which could block the pores off and then inhibit further diffusion of CO2 into the system. Cement mortar specimens containing 0%, 5%, 10%, 20%, and 40% γ-C2S as cement replacement were prepared. After water curing for 28 days followed by curing in an environmental chamber for 28 days, the specimens were then exposed to an accelerated carbonation with 5% CO2 concentration for 28 days. The carbonation depth of the cement mortar with a low replacement rate (5% and 10%) was lower than that of the OPC mortar at all ages due to the sequestration of CO2 by γ-C2S. However, the cement mortar with a high replacement rate (20% and 40%) showed less carbonation resistance due to the dilution effect of γ-C2S replacement and increase in initial porosity caused by nonhydraulic characteristic of γ-C2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.