Abstract

The interactive effects of phosphate solubilizing bacteria, N2 fixing bacteria and arbuscular mycorrhizal fungi (AMF) were studied in a low phosphate alkaline soil amended with tricalcium insoluble source of inorganic phosphate on the growth of an aromatic grass palmarosa (Cymbopogon martinii). The microbial inocula consisted of the AM fungus Glomus aggregatum, phosphate solubilizing rhizobacteria Bacillus polymyxa and N2 fixing bacteria Azospirillum brasilense. These rhizobacteria behaved as "mycorrhiza helper" and enhanced root colonization by G. aggregatum in presence of tricalcium phosphate at the rate of 200 mg kg(-1) soil (P1 level). Dual inoculation of G. aggregatum and B. polymyxa yielded 21.5 g plant dry weight (biomass), while it was 21.7 g in B. polymyxa and A. brasilense inoculated plants as compared to 14.9 g of control at the same level. Phosphate content was maximum (0.167%) in the combined treatment of G. aggregatum, B. polymyxa and A. brasilense at P1 level, however acid phosphatase activity was recorded to be 4.75 pmol mg(-1) min(-1) in G. aggregatum, B. polymyxa and A. brasilense treatment at P0 level. This study indicates that all microbes inoculated together help in the uptake of tricalcium phosphate which is otherwise not used by the plants and their addition at 200 mg kg(-1) of soil gave higher productivity to palmarosa plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.