Abstract

The means by which plasma treatment enhances the adhesion of polymer materials, remains obscure. Thus far, two possible mechanisms have been proposed: an increase in surface energy, and the anchor effects imparted by plasma etching. Independently from these mechanisms, reactions between free radicals, generated by plasma irradiation and adhesives are also likely to affect the adhesive properties of polymer materials. Free radicals generated on polyethylene (PE) by glow-discharge plasma were exposed to air and converted to peroxide. The peroxides were converted back to free radicals with the application of heat, and then graft polymerization was initiated, by adding a hydrophilic monomer such as acrylic acid. The peroxides formed by the reaction between free radicals and the oxygen in air was detected by chemiluminescence (CL). In this work, plasma-treated PE surfaces were bonded to aluminum boards, using epoxy resin as an intermediate adhesive and then subjected to a series of peeling tests. The sample with the highest peeling strength also had the highest level of CL-detected peroxides. These findings suggest that the free radicals generated by plasma treatment influence the adhesive properties of the polymer materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.