Abstract

Chlorophyll-a (Chl-a) is an important marine indicator, and the improvement in Chl-a concentration retrieval for ocean color remote sensing is always a major challenge. This study focuses on the northwest Pacific fishing ground (NPFG) to evaluate and improve the Chl-a products of three mainstream remote sensing satellites, Himawari-8, MODIS-Aqua, and VIIRS-SNPP. We analyzed in situ data and found that an in situ Chl-a concentration of 0.3 mg m−3 could be used as a threshold to distinguish the systematic deviation of remote sensing Chl-a data in the NPFG. Based on this threshold, we optimized the Chl-a algorithms of the three satellites by data grouping, and integrated multisource satellite Chl-a data by weighted averaging to acquire high-coverage merged data. The merged data were thoroughly verified by Argo Chl-a data. The Chl-a front of merged Chl-a data could be represented accurately and completely and had a good correlation with the distribution of the NPFG. The most important marine factors for Chl-a are nutrients and temperature, which are affected by mesoscale eddies and variations in the Kuroshio extension. The variation trend of merged Chl-a data is consistent with mesoscale eddies and Kuroshio extension and has more sensitive responses to the marine climatic conditions of ENSO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call