Abstract

Iron parts of electrical machines are made of nonoriented isotropic ferromagnetic materials. The finite element method (FEM) is usually applied in the numerical field analysis and design of this equipment. The scalar Preisach hysteresis model has been implemented for the simulation of static and dynamic magnetic effects inside the ferromagnetic parts of motors. The dynamic model is an extension of the static one; an extra magnetic field intensity term is added to the output of the static inverse model. This is a viscosity-type dynamic model. The fixed point method with stable scheme has been realized to take frequency-dependent anomalous losses into account in FEM. This scheme can be used efficiently in the frame of any potential formulations of Maxwell's equations. The comparison between measured and simulated data using a toroidal core shows a good agreement. A modified nonlinear version of T.E.A.M. Problem No. 30.a is also shown to test the hysteresis model in the FEM procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.