Abstract

Reliable absolute positioning is indispensable in long-term positioning systems. Although simultaneous localization and mapping based on light detection and ranging (LiDAR-SLAM) is effective in global navigation satellite system (GNSS)-denied environments, it can provide only local positioning results, with error divergence over distance. Ultrawideband (UWB) technology is an effective alternative; however, non-line-of-sight (NLOS) propagation in complex indoor environments severely affects the precision of UWB positioning, and LiDAR-SLAM typically provides more robust results under such conditions. For robust and high-precision positioning, we propose an improved-UWB/LiDAR-SLAM tightly coupled (TC) integrated algorithm. This method is the first to combine a LiDAR point cloud map generated via LiDAR-SLAM with position information from UWB anchors to distinguish between line-of-sight (LOS) and NLOS measurements through obstacle detection and NLOS identification (NI) in real time. Additionally, to alleviate positioning error accumulation in long-term SLAM, an improved-UWB/LiDAR-SLAM TC positioning model is constructed using UWB LOS measurements and LiDAR-SLAM positioning information. Parameter solving using a robust extended Kalman filter (REKF) to suppress the effect of UWB gross errors improves the robustness and positioning performance of the integrated system. Experimental results show that the proposed NI method using the LiDAR point cloud can efficiently and accurately identify UWB NLOS errors to improve the performance of UWB ranging and positioning in real scenarios. The TC integrated method combining NI and REKF achieves better positioning effectiveness and robustness than other comparative methods and satisfactory control of sensor errors with a root-mean-square error of 0.094 m, realizing subdecimeter indoor positioning.

Highlights

  • Reliable absolute positioning is indispensable in long-term positioning systems

  • Introduction with regard to jurisdictional claims in Obtaining accurate, robust and continuous position information is an important guarantee for location-based services and applications, for which global navigation satellite systems (GNSSs) (especially the global positioning system (GPS) and the BeiDou navigation satellite system (BDS)) are common positioning technology solutions for outdoor environments

  • To suppress the error accumulation of light detection and ranging (LiDAR)-simultaneous localization and mapping (SLAM) while simultaneously obtaining the positioning results in the world coordinate system, we propose a novel improvedUWB/LiDAR-SLAM tightly coupled positioning system by using UWB LOS measurements identified by the LiDAR point cloud and the positioning results of LeGO-LiDAR odometry and mapping (LOAM)

Read more

Summary

Introduction

Reliable absolute positioning is indispensable in long-term positioning systems. simultaneous localization and mapping based on light detection and ranging (LiDAR-SLAM) is effective in global navigation satellite system (GNSS)-denied environments, it can provide only local positioning results, with error divergence over distance. Ultrawideband (UWB) technology is an effective alternative; non-line-of-sight (NLOS) propagation in complex indoor environments severely affects the precision of UWB positioning, and LiDAR-SLAM typically provides more robust results under such conditions. For robust and high-precision positioning, we propose an improvedUWB/LiDAR-SLAM tightly coupled (TC) integrated algorithm. This method is the first to combine a. LiDAR point cloud map generated via LiDAR-SLAM with position information from UWB anchors to distinguish between line-of-sight (LOS) and NLOS measurements through obstacle detection and NLOS identification (NI) in real time. NI method using the LiDAR point cloud can efficiently and accurately identify UWB NLOS errors to improve the performance of UWB ranging and positioning in real scenarios.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.