Abstract

Chronic wounds in patients suffering from type II diabetes mellitus (DMII) where wounds remain open with a complicated pathophysiology, healing, and recovery process is a public health concern. Normal wound healing plays a critical role in wound closure, restoration of mechanical properties, and the biochemical characteristics of the remodeled tissue. Biological scaffolds provide a tissue substitute to help facilitate wound healing by mimicking the extracellular matrix (ECM) of the dermis. In the current study an electrospun biomimetic scaffold, wound healing device (WHD), containing tropoelastin (TE) and collagen was synthesized to mimic the biochemical and mechanical characteristics of healthy human skin. The WHD was compared to a commercially available porcine small intestinal submucosa (SIS) matrix that has been used in both partial and full-thickness wounds, Oasis® Wound Matrix. Using a diabetic murine model C57BKS.Cg-m+/+Leprdb/J mice (db/db) wound closure rates, histochemistry (CD31 and CD163), qPCR (GAPDH, TNF-α, NOS2, ARG1 and IL10), and mechanical testing of treated wound sites were evaluated. The WHD in a splinted, full thickness, diabetic murine wound healing model demonstrated skin organ regeneration, an enhanced rate of wound closure, decreased tissue inflammation, and a stronger and more durable remodeled tissue that more closely mimics native unwounded skin compared to the control device.

Highlights

  • Chronic, non-healing, or slow to heal wounds present a significant and growing health problem in the United States, with an estimated 6.5 million people affected, at an annual cost of US $20 billion, with the highest risk groups represented by the elderly and the increasing prevalence of lifestyle diseases such as diabetes and obesity [1,2]

  • Percent wound closure for Control and wound healing device (WHD) were significantly greater than Oasis from day 6 to day 16 (p

  • The increasing prevalence of sedentary lifestyle choices leads to diseases such as diabetes and obesity, which contribute to the rise in these staggering wound numbers [1,2]

Read more

Summary

Introduction

Non-healing, or slow to heal wounds present a significant and growing health problem in the United States, with an estimated 6.5 million people affected, at an annual cost of US $20 billion, with the highest risk groups represented by the elderly and the increasing prevalence of lifestyle diseases such as diabetes and obesity [1,2]. These wounds can take years or decades to heal causing significant emotional distress and physical pain to the patient, including their families [3]. Of the more than 23 million people in the US affected by diabetes, 10-15% will have at least one diabetic foot ulcer (DFU) in their lifetime [6], resulting in more than $176 billion per year in health care expenditures [7,8].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call