Abstract

There are two major weaknesses for the AgSnO2 contacts used in the low voltage switch devices. One is poor workability, which causes the AgSnO2 materials to hardly deform into the required shape. Another is the increased contact resistance after arcing, which, in turn, causes an unfavorable temperature rise in the switches. In this article, the nanocomposited AgSnO2 materials were developed to overcome the weaknesses. The nanosized SnO2 powders with or without CuO additive were prepared by the chemical precipitation method. The SnO2 powders and Ag powders were high energy milled together to obtain AgSnO2 composite powders, which were then sintered, hot pressed and extruded. It was found that the SnO2 particles mainly distribute in the interior of Ag grains with Ag film on the grain boundary. The hardness of AgSnO2 composites and the wetting angle of Ag melt on SnO2 particles decreased with the addition of a small amount of CuO. By the combining effect of Ag film on grain boundary and the addition of CuO, the elongation and workability of the AgSnO2 materials improved. The experiments of rapid solidification revealed that more SnO2 particles with CuO addition were engulfed in the Ag matrix than those without CuO, which inhibited the redistribution of SnO2 particles on the contact surface during the arcing process. The industrial type test in the 45A contactor suggested that the nanocomposited AgSnO2 materials are suitable to be used as contacts in low voltage switches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.