Abstract
As one aspect of LPSO morphology, the volume fraction of block LPSO phases (VFLPSO-B) was tailored by changing the total content of solute atoms in Mg-Y2x-Znx (x = 1, 0.5, and 0.25 at.%) alloys. The effects of VFLPSO-B on compression behavior, dynamic recrystallization (DRX), and workability were investigated. The results reveal that increasing VFLPSO-B leads to higher flow stress, hardness, DRX ratio, and better workability which is embodied in the lower deformation activation energy (Q), broader deformable conditions, and narrower improper processing domains. Kink bands and initial grain boundaries are ideal sites for the nucleation of DRX grains during compression. Block LPSO phases near the initial grain boundaries further promote the nucleation of DRX grains but inhibit their growth, which contributes to increasing the DRXed grain size exponent (m). This paper reveals the feasibility of improving the workability of LPSO-containing Mg alloys by modifying the LPSO morphology to broaden their applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.