Abstract

The central benzodiazepine receptor (cBZR)-gamma-aminobutyric acid (GABA(A)) receptor complex in the human brain plays an important role in many neurological and psychiatric disorders. (18)F-Labeled flumazenil ([(18)F]FZ) provides a potentially useful tracer to investigate those disorders by means of positron emission tomography (PET). [(18)F]Flumazenil was synthesized from its nitro-precursor Ro 15-2344 in DMF at high temperatures between 150 degrees C and 160 degrees C. Other solvents like acetonitrile and dimethylsulfoxide were also investigated as reaction media. A new HPLC method for the final purification of [(18)F]FZ was developed to circumvent some difficulties associated with a previously published procedure sometimes led to a contamination of [(18)F]FZ with Ro 15-2344. The final purification of the radiotracer was achieved using a Waters Symmetry Prep C18 HPLC column with elution with 0.05 M sodium acetate (NaOAc) buffer (pH 5)/THF/MeOH (80:10:10). [(18)F]FZ could be synthesized in reproducible radiochemical yields (RCYs) of 15-20% (decay corrected to EOB) after 80 min overall synthesis time. The synthesized [(18)F]FZ was applied for the first time in a human PET study in a patient with ischemic right middle cerebral artery stroke using the HRRT high-resolution research scanner (Siemens Medical Solution, Knoxville, TN, USA). [(18)F]FZ is a potentially useful GABA receptor-binding PET ligand. A modified procedure for its preparation in reproducibly high radiochemical yields has been described and the [(18)F]FZ thus produced has been used successfully in a pilot clinical study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.