Abstract
Various feature selection algorithms are usually employed to improve classification models’ overall performance. Optimization algorithms typically accompany such algorithms to select the optimal set of features. Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics. The present paper presents two Stages of Local Search models for feature selection based on WOA (Whale Optimization Algorithm) and Great Deluge (GD). GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search. Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm. In addition, disruptive selection (DS) is employed to select the solutions from the population for local search. DS is chosen to maintain the diversity of the population via enhancing low and high-quality solutions. Fifteen (15) standard benchmark datasets provided by the University of California Irvine (UCI) repository were used in evaluating the proposed approaches’ performance. Next, a comparison was made with four population-based algorithms as wrapper feature selection methods from the literature. The proposed techniques have proved their efficiency in enhancing classification accuracy compared to other wrapper methods. Hence, the WOA can search effectively in the feature space and choose the most relevant attributes for classification tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.