Abstract
Several Deep Learning (DL) and medical image Machine Learning (ML) methods have been investigated for efficient data representations of medical images, such as image classification, Content-Based Image Retrieval (CBIR), and image segmentation. CBIR helps medical professionals make decisions by retrieving similar cases and images from electronic medical image databases. CBIR needs expressive data representations for similar image identification and knowledge discovery in massive medical image databases explored by distinct algorithmic methods. In this study, an Improved Whale Optimization Algorithm with Deep Learning-Driven Retinal Fundus Image Grading and Retrieval (IWOADL-RFIGR) approach was developed. The presented IWOADL-RFIGR method mainly focused on retrieving and classifying retinal fundus images. The proposed IWOADL-RFIGR method used the Bilateral Filtering (BF) method to preprocess the retinal images, a lightweight Convolutional Neural Network (CNN) based on scratch learning with Euclidean distance-based similarity measurement for image retrieval, and the Least Square Support Vector Machine (LS-SVM) model for image classification. Finally, the IWOA was used as a hyperparameter optimization technique to improve overall performance. The experimental validation of the IWOADL-RFIGR model on a benchmark dataset exhibited better performance than other models.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.