Abstract

Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of wetland maps derived with moderate resolution imagery and traditional techniques have been limited and often unsatisfactory. We explored and evaluated the utility of a newly launched high-resolution, eight-band satellite system (Worldview-2; WV2) for identifying and classifying freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using a hybrid approach and a novel application of Indicator Species Analysis (ISA). We achieved an overall classification accuracy of 86.5% (Kappa coefficient: 0.85) for 22 classes of aquatic and wetland habitats and found that additional metrics, such as the Normalized Difference Vegetation Index and image texture, were valuable for improving the overall classification accuracy and particularly for discriminating among certain habitat classes. Our analysis demonstrated that including WV2’s four spectral bands from parts of the spectrum less commonly used in remote sensing analyses, along with the more traditional bandwidths, contributed to the increase in the overall classification accuracy by ~4% overall, but with considerable increases in our ability to discriminate certain communities. The coastal band improved differentiating open water and aquatic (i.e., vegetated) habitats, and the yellow, red-edge, and near-infrared 2 bands improved discrimination among different vegetated aquatic and terrestrial habitats. The use of ISA provided statistical rigor in developing associations between spectral classes and field-based data. Our analyses demonstrated the utility of a hybrid approach and the benefit of additional bands and metrics in providing the first spatially explicit mapping of a large and heterogeneous wetland system.

Highlights

  • Wetlands perform vital functions by providing habitat, improving water quality, recharging groundwater aquifers, reducing erosion, and mitigating flood severity [1,2]

  • Our analysis showed that the NDVI remains valuable for improving overall classification accuracy, and image texture can be useful for separating scrub-shrub wetlands from emergent herbaceous wetlands

  • Sensed data and increasingly effective analyses (e.g., [60]) are providing informative baselines for scientists and resource managers to study the effects of climate change, altered hydrology, and other perturbations and adaptive management techniques on wetland systems

Read more

Summary

Introduction

Wetlands perform vital functions by providing habitat, improving water quality, recharging groundwater aquifers, reducing erosion, and mitigating flood severity [1,2]. Despite their importance for increasing biodiversity and provisioning ecosystem services and goods, extensive loss of wetlands has occurred throughout the world [3,4,5,6]. There has been considerable concern regarding the impact of global and regional climate change on wetlands, especially in light of increasing temperatures and changing trends in precipitation [7,8]. Wetland mapping and inventory represent the first steps toward acquiring scientific knowledge about wetland habitats [9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call