Abstract

Our previous research had revealed that the dissolved oxygen limitation was more favorable for vitamin B12 fermentation, due to its inducement to the increased glycolytic flux in Pseudomonas denitrificans. In this paper, a novel strategy was implemented to further investigate the metabolic characteristics of P. denitrificans under different oxygen supply levels, by exogenously adding rotenone (a respiratory chain inhibitor interfering with the oxygen consumption) to the fermentation broths. Compared to the fermentation process without rotenone treatment, it was observed that 5mg/L rotenone treatment could significantly strengthen the glycolytic flux of P. denitrificans via activating the key glycolytic enzymes (phosphofructokinase and pyruvate kinase), resulting in the accelerated generations of anterior precursors (glutamate and 5-aminolevulinic acid) for vitamin B12 biosynthesis. Although 5mg/L rotenone treatment had a negative effect on cell growth of P. denitrificans, the vitamin B12 yield was increased from 48.28 ± 0.62mg/L to 54.70 ± 0.45mg/L, which further proved that an increased glycolytic flux in P. denitrificans was a consequence of higher vitamin B12 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.