Abstract

BackgroundVasodilator stress computed tomography perfusion (sCTP) imaging is complementary to coronary CT angiography (CCTA), used to determine the hemodynamic significance of coronary artery disease. However, it requires a separate image acquisition due to motion artifacts caused by higher heart rates during stress, resulting in increased iodine contrast dose and radiation. We sought to determine whether a novel motion correction algorithm applied to stress images would improve the visualization of the coronary arteries to potentially allow CCTA + sCTP evaluation in a single scan. Methods28 patients referred for clinically indicated CCTA (iCT, Philips) underwent sCTP imaging (retrospective-gating with dose modulation; 100 kVp and 250 mA; 5.2 ± 4.3 mSv) after regadenoson (0.4 mg, Astellas). Stress images were reconstructed using standard filtered back-projection (FBP) and also processed to generate interaction-free coronary motion-compensated back-projection reconstructions (MCR). Each coronary artery from standard FBP and MCR images was viewed side-by-side by a reader blinded to the reconstruction technique, who graded severity of motion artifact by segment (scale 0–5, with 3 as the threshold for diagnostic quality) and to measure signal-to-noise and contrast-to-noise ratios (SNR, CNR). ResultsVisualization scores were higher with MCR for all coronary segments, including 14/86 (16%) segments deemed as non-diagnostic on FBP images. SNR (7 ± 2) and CNR (15 ± 8) were unchanged by motion-correction (7 ± 3, p = 0.88 and 15 ± 5, p = 0.94, respectively). ConclusionsMCR improves the visualization of coronary anatomy on sCTP images without degrading image characteristics. This algorithm is an important step towards the combined assessment of coronary anatomy and myocardial perfusion in a single scan, which will reduce study time, radiation exposure and contrast dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.